7 research outputs found

    A usability study in patients with stroke using MERLIN, a robotic system based on serious games for upper limb rehabilitation in the home setting

    Get PDF
    Neuroscience and neurotechnology are transforming stroke rehabilitation. Robotic devices, in addition to telerehabilitation, are increasingly being used to train the upper limbs after stroke, and their use at home allows us to extend institutional rehabilitation by increasing and prolonging therapy. The aim of this study is to assess the usability of the MERLIN robotic system based on serious games for upper limb rehabilitation in people with stroke in the home environment.This research is part of a MERLIN project, which has received funding from EIT Health (Grant no. 20649). EIT Health is supported by the European Institute of Innovation and Technology (EIT), a body of the European Union which receives support from the European Union’s Horizon 2020 Research and innovation programme

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    A usability study in patients with stroke using MERLIN, a robotic system based on serious games for upper limb rehabilitation in the home setting

    No full text
    Background: Neuroscience and neurotechnology are transforming stroke rehabilitation. Robotic devices, in addition to telerehabilitation, are increasingly being used to train the upper limbs after stroke, and their use at home allows us to extend institutional rehabilitation by increasing and prolonging therapy. The aim of this study is to assess the usability of the MERLIN robotic system based on serious games for upper limb rehabilitation in people with stroke in the home environment. Methods: 9 participants with a stroke in three diferent stages of recovery (subacute, short-term chronic and long term chronic) with impaired arm/hand function, were recruited to use the MERLIN system for 3 weeks: 1 week training at the Maimonides Biomedical Research Institute of Cordoba (IMIBIC), and 2 weeks at the patients’ homes. To evaluate usability, the System Usability Scale (SUS), Adapted Intrinsic Motivation Inventory (IMI), Quebec User Evaluation of Satisfaction with assistive Technology (QUEST), and the ArmAssist Usability Assessment Questionnaire were used in the post-intervention. Clinical outcomes for upper limb motor function were assessed pre- and post-intervention. Results: 9 patients participated in and completed the study. The usability assessment reported a high level of satisfaction: mean SUS score 71.94% (SD=16.38), mean QUEST scale 3.81 (SD=0.38), and mean Adapted IMI score 6.12 (SD=1.36). The results of the ArmAssist Questionnaire showed an average of 6 out of 7, which indicates that MERLIN is extremely intuitive, easy to learn and easy to use. Regarding clinical assessment, the Fugl-Meyer scores showed moderate improvements from pre- to post-intervention in the total score of motor function (p=0.002). There were no signifcant changes in the Modifed Ashworth scale outcomes (p=0.169). Conclusions: This usability study indicates that home-based rehabilitation for upper limbs with the MERLIN system is safe, useful, feasible and motivating. Telerehabilitation constitutes a major step forward in the use of intensive rehabilitation at home.This research is part of a MERLIN project, which has received funding from EIT Health (Grant no. 20649). EIT Health is supported by the European Institute of Innovation and Technology (EIT), a body of the European Union which receives support from the European Union’s Horizon 2020 Research and innovation programme.Ye

    Evolution over Time of Ventilatory Management and Outcome of Patients with Neurologic Disease∗

    No full text
    OBJECTIVES: To describe the changes in ventilator management over time in patients with neurologic disease at ICU admission and to estimate factors associated with 28-day hospital mortality. DESIGN: Secondary analysis of three prospective, observational, multicenter studies. SETTING: Cohort studies conducted in 2004, 2010, and 2016. PATIENTS: Adult patients who received mechanical ventilation for more than 12 hours. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Among the 20,929 patients enrolled, we included 4,152 (20%) mechanically ventilated patients due to different neurologic diseases. Hemorrhagic stroke and brain trauma were the most common pathologies associated with the need for mechanical ventilation. Although volume-cycled ventilation remained the preferred ventilation mode, there was a significant (p < 0.001) increment in the use of pressure support ventilation. The proportion of patients receiving a protective lung ventilation strategy was increased over time: 47% in 2004, 63% in 2010, and 65% in 2016 (p < 0.001), as well as the duration of protective ventilation strategies: 406 days per 1,000 mechanical ventilation days in 2004, 523 days per 1,000 mechanical ventilation days in 2010, and 585 days per 1,000 mechanical ventilation days in 2016 (p < 0.001). There were no differences in the length of stay in the ICU, mortality in the ICU, and mortality in hospital from 2004 to 2016. Independent risk factors for 28-day mortality were age greater than 75 years, Simplified Acute Physiology Score II greater than 50, the occurrence of organ dysfunction within first 48 hours after brain injury, and specific neurologic diseases such as hemorrhagic stroke, ischemic stroke, and brain trauma. CONCLUSIONS: More lung-protective ventilatory strategies have been implemented over years in neurologic patients with no effect on pulmonary complications or on survival. We found several prognostic factors on mortality such as advanced age, the severity of the disease, organ dysfunctions, and the etiology of neurologic disease

    Mitochondrial physiology: Gnaiger Erich et al ― MitoEAGLE Task Group

    No full text

    Optimization of adsorptive removal of α-toluic acid by CaO2 nanoparticles using response surface methodology

    Get PDF
    The present work addresses the optimization of process parameters for adsorptive removal of α-toluic acid by calcium peroxide (CaO2) nanoparticles using response surface methodology (RSM). CaO2 nanoparticles were synthesized by chemical precipitation method and confirmed by Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) analysis which shows the CaO2 nanoparticles size range of 5–15 nm. A series of batch adsorption experiments were performed using CaO2 nanoparticles to remove α-toluic acid from the aqueous solution. Further, an experimental based central composite design (CCD) was developed to study the interactive effect of CaO2 adsorbent dosage, initial concentration of α-toluic acid, and contact time on α-toluic acid removal efficiency (response) and optimization of the process. Analysis of variance (ANOVA) was performed to determine the significance of the individual and the interactive effects of variables on the response. The model predicted response showed a good agreement with the experimental response, and the coefficient of determination, (R2) was 0.92. Among the variables, the interactive effect of adsorbent dosage and the initial α-toluic acid concentration was found to have more influence on the response than the contact time. Numerical optimization of process by RSM showed the optimal adsorbent dosage, initial concentration of α-toluic acid, and contact time as 0.03 g, 7.06 g/L, and 34 min respectively. The predicted removal efficiency was 99.50%. The experiments performed under these conditions showed α-toluic acid removal efficiency up to 98.05%, which confirmed the adequacy of the model prediction
    corecore